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Abstract. A Kronig-Penky model with a constant elecrric field F for a non-interacting electron 
is used to study the msmission properties of the Anderson transition in one-dimensional systems 
with disordered &function potentials. We examine the cues where the potential varies uniformly 
from 0 to W (barriers) or from -W to 0 (wells) for a given disorder W. We observe jumps in 
the transmission coefficient at the points E + Fx = n2nz (where E is the electron energy and 
n an integer). These jumps are related to the small oscillations observed by Soukoulis et nf in 
the mixed m e  (potentials from -WIZ to WIZ). However. an interesting feature is found in 
the wells in the range between two jumps. It is observed that in the presence of a small field 
the states become more localized and the localization length decreases up to a minimum for a 
critical value F, instead of increasing. Finally, we have studied thc effect of the disorder on 
the Anderson transition by means of the participation nf io  and the localization length. 

1. Introduction 

It is well established that almost all the eigenstates are exponentially localized in one- 
dimensional (ID) disordered systems in the absence of external fields irrespective of the 
amount of disorder [l-31. Such localization properties have been extensively studied both 
analytically and numerically [4-14]. Two main models have been shown to be powerful in 
examining the transport properties of ID systems: the Kronig-Penney model [S-121 and the 
tight-binding model [lo, 13,141. The Kronig-Penney model is greatly appreciated for its 
simplified structure in introducing external fields. Two types of ID disordered system have 
been proposed substitutionally disordered systems with a constant lattice parameter [S-111 
and spatially disordered systems with a constant potential [U]. 

The transmission coefficient is the relevant quantity for determining the localization 
properties [S, 111 and its logarithm has been shown to be statistically well behaved [15,16] 
and to obey the central limit theorem [17]. 

Landauer [18] was the first to relate the transmission coefficients to the resistance: 

R = T-l - 1 (1) 

supported by experimental evidence at low temperatures on thin 'dirty' wires [19,20]. The 
interest in the zero-temperature properties of these systems is that the resistance should 
increase exponentially with increasing length of the system: 

R = exp(orl) - 1 (2) 
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where 01 is the inverse localization length. At higher temperatures the localization of electron 
states will not be apparent because the phonon will cause the electron to hop from one state 
to another. 

The elcctronic properties of disordered systems in the presence of electric fields are still 
less known and continue to be an attractive goal. For these systems, it has been proved 
that for a critical field Fc giving a total electrostatic energy across the sample equal to the 
electron energy, i.e. F,L = E ,  the delocalization transition occurs. The relevant parameter 
in this problem is X = F L J E .  In particular, at X = 1, a transition is observed from 
exponentially to power-law decaying states as confirmed by various calculations [9,11,21], 
while for large fields the transition from power law to extended states has been rigorously 
derived [lo]. Most models considered uniformly distributed disordered potentials between 
-W/2 and W / 2  (mixed case) for a given disorder W, and very few have been reported 
for the barriers case where the disordered potential varies from 0 to W or the wells case 
between -W and 0. 

Another relevant physical quantity for describing the nature of the eigenstates in the 
Anderson localization problem is the inverse participation ratio [22-241. Furthermore a 
scaling law equation has been recently analytically derived for this quantity [Z]. 

In this paper we are firstly concerned with the behaviour of the transmission coefficient 
in the presence of an electric field for two new systems: barriers and wells. Then we 
compare our data in the light of the mixed-case results [8,10]. These systems may exhibit 
a new behaviour rather than the mixed case but we expect a compensation of the first two 
systems. 

In a second step the inverse participation ratio and the localization length are used to 
examine the effect of the disorder on the delocalization transition in the mixed systems. It is 
important to confirm that the disorder does not change the Anderson transition qualitatively. 

2. Formalism 

We consider a linear chain of a finite L atoms with 8-peak potentials of random strengths 
V,  uniformly distributed. The Kronig-Penney model is used to calculate the wavefunctions 
of this system: 

where E is the electron energy measured in h2/2m units and the lattice parameter U is 
constant and taken here as the unit length. The disordered sample extends from x = 0 
to x = L = Nu, the two ends being connected ohmically to perfect leads maintained at a 
constant potential difference le1 F L ,  where e is a charge of the electron taken for convenience 
as unity. 

The numerical resolution of equation (3) can be performed by taking advantage 
of the Poincari map representation of the Schrodinger equation. This transformation 
consists in relating the wavefunction at different lattice sites. Specifically, by defining 
qn = @ ( x  = na), Bellissad et al [26] showed in the absence of external field that 
equation (3) can be exactly mapped into a finite-difference equation of the form 

*"+I +@"-I - VI- = (2c0s&)*nr,. a (4) 
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In order to map equation (3) to a finite second-order differential equation it is convenient 
to approximate the potential F x  by a step function 19-11,271, i.e. the so-called ladder 
approximation. This approximation is expected to be valid in the limit of weak fields 
(Fa < E ) .  By extrapolating the results obtained by Cota et a1 Ill] of a comparison 
between the exact results and the approximate results to the parameters used in the present 
paper we expect that this approximation is valid for fields up to a few per cent of the 
electron energy. Once this is done, the solutions to equation (3) in between 6 potentials axe 
plane waves instead of Airy functions. The corresponding Poincart map then reads 

with k, = d m .  Equation (5)reduces’to equation (4) for F = 0. This equation is 
a recursion formula and enables one to treat very large systems, being limited only by the 
computer time available. To carry out the iterations we introduce as initial values for 
and @2 the plane waves @I = exp(-ifi) and @2 = exp(-2 ia) .  We consider here an 
electron of wavenumber kL incident at x = L from the right. It is partially reflected with 
complex reflection amplitude and partially transmitted with a wavennmber f i . Iterating 
equation (5) we can calculate the wavefunctions @ N + ~  and q ~ + 3  in order to obtain the 
transmission coefficient from the relation 

where kL = and L = N + 2. We examine here the quantity In(T) because it is 
statistically well behaved [16]. 

The delocalization and the nature of the wavefunction can also be studied by means of 
the inverse participation ratio [23] and the localization length [4]. The inverse participation 
ratio is defined by 

It behaves in the following way: 

P c( O(N-’)  for extended states 

and 

P c( O(No) for localized states. 

In a recent numerical work Mato and Car0 [24] have confirmed the delocaiization transition 
by means of tbis quantity at X = 1 ,  providing some explanation for the results on the 
transmission coefficient. 

The localization length A is defined by [4,26] 

where ( } means the average. For F = 0 and using the Kronig-Penney model for mixed 
systems, the localization length can be expressed in terms of the electron energy and the 
disorder W [9] as follows: 

I5 
A ( F  = 0) = 96- 

W2’ 
This expression is valid only in the mixed case ((V,) = 0). 
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3. Results and discussion 

In this section we discuss our numerical data on the transmission coefficient, the participation 
ratio and the localization length for different cases of ID systems. The length of the system 
is L = 4000 and is sufficient to reproduce. the global transport properties of the chain 
of finite length because the largest localization length (Amm = 55 for the bamers) is 
much smaller than 4000. The quantities of interest are averaged over a number of 100 
realizations (which is sufficient to obtain an accuracy of few per cent for (In(T)/L)) for the 
transmission coefficient and 1000 realizations for the participation ratio and the localization 
length calculations (in order to obtain the same accuracy). The transmission coefficient is 
determined for two types of system, namely barriers and wells, while the participation ratio 
and the localization length are calculated in the mixed case. 

3.1. Transmission coefjcient 

For comparison, we consider here the same parameters ~~ 
~~ used by Soukoulis et al [9] for 

mixed systems, i.e. E = 5 and W = v%. 
The transmission coefficient at F = 0 has been predicted to decrease exponentially with 

respect to the length of the system. In the barrier and well systems the same behaviour 
is seen in figure 1. It is also observed that the wells exhibit a smaller localization length 
(A 12) while the barriers have a larger localization length (A N 55) and for the mixed 
case A N 38, satisfying equation (10). This result suggests, as expected, that the well 
systems strongly attract electrons, because of the typical nature of the short-range potential, 
while the barrier systems make transmission easier because of the tunnel effect. Obviously 
in mixed systems, the strong attraction of the wells competes with the tunnel effect in the 
barriers. 
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60 - 
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0 

0 
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0 + 
0 I 

0 500 1000 1500 2000 2500 3000 3500 4000 
Chain l e n g i h  

Figure 1. Comparison of the Vmsmission coefficient between barriers (t), wells (0) and thc 
mixed case (0) for F = 0. 
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In applying an elechjc field to the baniers or the wells an abrupt jump appears in the 
transmission coefficient curves as seen in figure 2 for both the barriers and the wells at the 
particular values corresponding to E + F x  = n2n2, where n is in integer, in agreement 
with the predictions of Delyon et a1 [IO] in the mixed case for F = 0. The strength of 
these jumps decreases for increasing F.  Probably these jumps are related to the Zener-type 
transitions suggested by Sonkoulis et al [9] and Cota etal [ill. This implies that power-law 
decays are not expected in such cases,for length chains including these jumps. 

For lengths before the first jump for the barriers the states undergo a transition from 
exponential to power-law decaying states (at F L j E  = 1) as predicted by other works [9,11] 
for mixed systems. In particular, figures 1 and 3(a) show the qualitatively similar behaviour 
(the curve of -(In T )  as a function of the Iength chain fits a straight line at F = 0 and, 
for F # 0, -(lnT) is a straight line as a function of the length chain on a Iogarithmic 
scale). However, surprisingly, the states associated with the wells da not behave similarly 
in figure 3(6). In this figure, (-InT) exhibits an exponentially divergent curve. Such 
unexpected features are reported here, indicating the existence of another type,of localized 
state observed in other situations [28]: 

@ 2: exp(-xj3) with p > 1. (12) 

In such systems the  small^ electric field increases the attraction of the electron and then 
decreases the overlap of the wavefunctions. The localization length defined by equation 
(IO) decreases to a minimum (h N 5 )  for a critical field (Fc N 0.01). Owing to the jump 
in the transmission coefficient, this localization length varies with the length of the system. 
The transport properties of the wells will compete with the barriers in mixed systems. 
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Ftgure 3. Transmission coefficient for different heel&. (a) barriers for F I 0.001 (01, 0.002 
(+) and 0.005 (0) (log-log scale) (-,guide); (b)  wells for F = 0 (0). 0.001 (+), 0.005 (0) 
and 0.005 ( x )  (-4- InT = 0.02L1.5), guide). 

In opposition to the global lengths (including the jumps) the transmission coefficient in 
the presence of an electric field for the systems studied here are both smaller than in the 
mixed case (figure 4). This is a curious result because we expect compensation between 
the effects of the wells and the barriers. Probably the mixture of the two cases will make 
the transmission of electrons easier. 

3.2. Effect of the disorder on the Anderson transition 

In this section, we study the effect of the disorder W on the delocalization transition, 
i.e. the inverse participation ratio P and the localization length h. These quantities are 
essential in describing the nature of the eigenstates. In particular they are sensitive to the 
relevant parameter X = F L / E  [Ill. In the following calculations we have considered for 
convenience E = 1. 

It is well established from transmission coefficient calculations [9,11] or from 
participation ratio calculations [24] that the delocalization transition occurs at X zz 1 and 
the states are exponentially localized for X c 1 while for X > 1 the wavefunctions become 
extended. Furthermore in the transition region (X N 1) the wavefunctions are power law 
localized [9, 11,211. In figure 5 the inverse participation ratio P is reported as a function 
of In X for different disorders W. These results clearly confirm the expected transition at 
X = 1. The results of Mato and Cam 1241 on the participation ratio show a transition 
slightly shifted to the right of X = 1. This is presumably because they have averaged over 
a small number of iterations (15) and then their results are less accurate rather than ours 
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Figure 4. Comparison of the transmission caefficient between the bani& (0). the wells (0) 
and the mixed case (+) for F = 0.15, 

(1000 realizations). It is mainly observed in figure 5 that the transition is smooth for small 
disorder W and the curve becomes a horizontal line when W + 0, leading as expected to 
extended states. On increase in the disorder, the transition becomes abrupt. As predicted 
by Mato and Car0 [24], these effects do not affect the critical point of the transition. It has 
been shown for infinite chains that this transition occurs at X = 0 when the potential is 
arbitrarily smooth [29]. 

In the localized states the values of the inverse participation ratio correspond 
approximately to the core of the wavefunction (P-' N A/Z). From figure 5 the inverse 
participation ratio takes the following values in the localized states: 

W = 1.5 

W = l  P-l -50 

W =0.5 P-' ~-200 

P-' N 20 

and then the extended states are expected for W + 0 (P-' + 00). It is then possible to 
parametrize the inverse participation ratio as 

(U > O  and X,= W=O).  (13) 
1 2P-' N L N 

IX - X C I "  

This transition is also observed in figure 6 where the localization length h is shown as 
a function of X. This behaviour is seen in quasi-periodic systems at a &tical point [4]. 
However, in this way, it seems that the disorder affects the transition weakly (the transition 
is shifted slightly to the right of X = 1 for large values of W). 
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4. Conclusion 

In this paper we examined the Anderson transition for different‘ disordered ID systems 
(barriers, wells and mixed systems) and also the effect of the disorder on this transition. 
For this, we calculated the transmission coefficient, the inverse participation ratio and the 
localization length. In the barriers and wells we found that the transmission coefficient also 
behaves like the mixed systems at F = 0 (i.e. exponentially localized states) but the well 
states are more strongly localized than the mixed states while, in the barriers, localization 
is weaker. 

The wells and barriers are also found to exhibit jumps which are suggested by Soukoulis 
et al [9] in the mixed case to be of Zener type at particular points, i.e. for Fx + E = n2r2. 
The jumps in the -(ln T) curves indicate that the localization length goes to infinity at these 
points as predicted by Delyon etal [lo]. 

The other new effect is observed for the wells in the transmission curves before the 
first jump. The localization length decreases to a minimum for sufficiently small fields, 
leading to super localized states. This suggests the existence of a critical field (for which 
the localization length is a minimum). This effect disappears when the wells and the barriers 
are mixed. 

Finally we examined the effect of disorder on the Anderson transition for mixed systems 
by calculating the inverse participation ratio and the localization length. This transition is 
strong for large disorders and becomes smooth when W + 0 without affecting the critical 
point X = 1 as expected by Mato and Car0 [24]. 

The systems examined here open up the following new questions. 

(1) What is the origin of the super localization in the wells and the jumps in the barriers 

(2) For which disorder W and energy E is super localization in the wells observed? 
(3) What is the behaviour of the exponent 01 of the super localized states (equation (12)) 

(4) What are the multifractal character, and the inverse participation ratio of the 

and the wells in the transmission coefficient? 

as a function of the field? 

eigenstates in the wells and the barriers? 

These questions are the subject of a forthcoming paper. 
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